If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5F)=3F^2+1
We move all terms to the left:
(5F)-(3F^2+1)=0
We get rid of parentheses
-3F^2+5F-1=0
a = -3; b = 5; c = -1;
Δ = b2-4ac
Δ = 52-4·(-3)·(-1)
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{13}}{2*-3}=\frac{-5-\sqrt{13}}{-6} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{13}}{2*-3}=\frac{-5+\sqrt{13}}{-6} $
| 1+9s=10s+10 | | -3(n+6)+10=-5 | | 4+y=2y+5 | | 8v-9v-5=4v+10 | | 9=4q-11 | | 10+5c=4c+4 | | 7*4-4*8=p | | 3-3m=3-2m | | -54=-4c | | X+6=12x6 | | X+6=12x=6 | | n+1=1+10n | | 4.1x-2.1(x-1)=4.4 | | (3x−1)^3/5−1=20 | | 2-1(3x+7)=-x+19 | | (3x-18)(4x+12)=0 | | 44-9t^2=0 | | (3x−1)3/5−1=20 | | (3x−1)35−1=20 | | T=H(H+r) | | -10x^2+10=-150 | | 2(2x÷5)+3x=40 | | 7y-2=y+2;y=2/3 | | |2y-7|=13 | | n/7=13/7 | | 15+(x+17)=3x-10 | | -2r-5r=-15-4r | | 6x+60=x+18 | | h=-35+0.8/1 | | 18x-2(3x*1)=5x-16 | | 82(0.6)-85=h | | 6x–8.25x=25 |